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Localization for Random and 
Quasiperiodic Potentials 

Thomas Spencer ~ 

A survey is made of some recent mathematical results and techniques for 
Schr6dinger operators with random and quasiperiodic potentials. A new 
proof of localization for random potentials, established in collaboration with 
H. von Dreifus, is sketched. 
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1. I N T R O D U C T I O N  

The main purpose of  this note is to sketch a new proof  of  localization for 
the r andom Schr6dinger opera tor  

H =  - A  + 2 v  (1) 

acting on 12(2J). Here A denotes the finite-difference Laplacian and v(j), 
j e 77 d, are assumed to be independent  r a n d o m  variables with a c o m m o n  
bounded  distribution density g(vj).  We establish localization (pure point  
spectrum) when either 2 is large or  when 2 is small and the energies we are 
considering lie in the band  tail. Later  we describe some recent results 
obtained for the case where v is quasiperiodic. 

When  v is r andom the spectrum of H is known  as a set 

spec H = spec - d + 2 supp g 

with probabil i ty one. If, for example, g is the characteristic function of 
[ - 1 / 2 ,  1/2], then 

spec H =  [0, 4d]  + 2 [  - 1/2, 1/2] = I- - 2 / 2 ,  4 d +  2/2]  
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The qualitative nature of the spectrum of H is a more difficult problem. Of 
course, if 2 = 0 or v is periodic, the spectrum of H is absolutely continuous 
and its generalized eigenfunctions are Bloch waves p ( j ) e  i~ j where p is a 
periodic function. These states are said to be extended. However, if d = 1 
and v(j) is random as above, then H has pure point (p.p.) spectrum with 
probability one for all 2 4= 0. Its eigenstates decay exponentially fast about 
some point in space and so are said to be localized. This was first proven in 
the continuum by Goldsheid et al. (1) The same results hold in any dimen- 
sion for large disorder, i.e., 2 >> 1, as was first predicted by Anderson. (2) 

When d >_- 3 and 2 is small one expects there to be a band of absolutely 
continuous (a.c.) spectrum. Nevertheless, the existence of a.c. spectrum 
remains an open and apparently difficult mathematical problem. For  any 
)~ r 0, near the end points of the spectrum, i.e., the band tails, it is known 
that there is always an interval of spectrum that is pure point. See Fig. 1. 

In two dimensions it is conjectured that all states are localized for any 
2 ~ 0 .  See ref. 3 for a more detailed mathematical survey and further 
references. 

The main estimate needed to establish localization can be expressed in 
terms of the decay of the Green's function 

G(E+ie,  x, y ) =  [ H - E - i e ]  -1 (x, y) 

where x, y e yd. We shall frequently need a finite-volume Green's function. 
For  A c 7/a, let H(A) denote H restricted to A with Dirichlet boundary 
conditions on the boundary of A, OA. We write the corresponding Green's 
function a s  G A. A finite-volume criterion for localization can now be 
formulated as follows: Let A t be a cube of side 2l with center c. We define 

 ,t /=prob  max Z 
( la-- c[ <~ l/2 bE c3AI 

(2) 

Pt(E) may be interpreted as the probability that a point inside A t feels the 
boundary. See Fig. 2. Given a particular v, if the inequality (2) holds, then 
A~ is said to be/-singular; otherwise, it is said to be/-regular. Hence Pt(E) 
is the probability that A~ is /-singular. 

P. a. c_.. P.F,. 

C j 
Fig. 1. The spectrum of H for small 2 and d>~ 3. 
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Fig. 2. The cube A t of side 2l with center c. 

T h e o r e m  1. There is a 6o > 0 such that if Pt(E) <~ 60 for some l >~ 4, 
then for all E '  such that I E - E ' I  ~<61(l)>0, 

sup JG(E' + ie; x, Y)I <~ cxe 7n+-yl (3) 

For each fixed E', the constant c x is finite with probabili ty one and 
const ~ ~ 1/l. 

By a theorem of Simon and Wolff (4) and of Delyon et al. (5) if H is ran- 
dom (in a weak sense) and its Green's function satisfies (3), then H has 
pure point spectrum in the interval I E ' - E [  ~<61(/) and the eigenstates 
decay exponentially fast. The constant 6 l(l) is chosen small, _~ l-(2a+ 2), so 
that Pt(E')"~ Pt(E) for E'  in the interval. 

In one dimension G(E) decays exponentially fast with probabili ty one 
for any fixed E and 2 r 0. No hypothesis on Pt(E) is needed. This follows 
from Furstenberg's theorem (6) on products of Sl(2) random matrices, 
which tells us that with probabili ty one for any fixed E, HO = E~ has an 
exponentially growing solution, i.e., O(n)--,e ~ tnj as n ~ oo or n ~ - o e .  The 
Green's function can be formed from these solutions. 

In any dimension, if 2 is large and we set l = 4, it is not hard to check 
that Pz(E) is small. This is because 12v(j)-EI  is large with high 

822/51/5-6-18 
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probability. From this we see that the Green's function in A~ is small, so PI 
is small. This proves localization for 12[ ~> 1. When E belongs to the band 
tail, Pt(E) is small for large l. The argument here is more complicated: Let 
A =infspec  H. It is known that the probability that H(At) has an eigen- 
value in the interval [A, A + 2 6 ]  is less than const x ldexp(--Cl 6-a/2) for 
some constant cl > 0. (v'8) This is Lifshitz's result on density of states in the 
band tail. On the other hand, if spec H(A) c~ [A, A + 26] = Z and E is in 
the band tail [A, A + 6], then 

[GA(E, a, b)l ~< (1/6) exp(-- 6//const) 

provided la-b] >~l/2. This is a standard fact for Schr6dinger operators, 
which only uses the fact that dist(E, specH(A))>~6. (3'9) If we choose 
1=6 -3/2 and 6 small, we see that [G A(E, a, b)[ is small with high 
probability, so Pt(E) is small. 

To obtain (3) for d~> 2, Fr6hlich and Spencer (m'3) developed a mul- 
tiscale perturbation scheme analogous to a probabilistic KAM approach, 
which made it possible to control small denominators that appear in 
perturbation theory. Small denominators naturally appear in estimates on 
G(E) in the form ( U - E )  -~, where E g are eigenvalues of H that come 
arbitrarily close to E. In refs. 10 and 11 we kept track of the "position" and 
"strength" of the small divisors. This technique is also particularly useful in 
the analysis of quasiperiodic potentials explained later. The new proof I 
sketch here for the random case is due to Henrique yon Dreifus (12) and 
myself. We use many ideas of ref. 10, but this new approach is technically 
simpler, particularly the probabilistic estimates. We were motivated by 
scaling ideas used in bond percolation, which were explained to us by 
Jeniffer and Lincoln Chayes. See ref. 13. In percolation Pt(E) may be 
thought of as the probability that opposite sides of a cube of side l are 
connected by occupied bonds. Localization in this language is then just the 
absence of percolation. 

2. S K E T C H  OF T H E  P R O O F  OF T H E O R E M  1 

To illustrate the proof of Theorem 1, we shall prove a weaker form of 
it, namely if Pro(E) <~ 6o, then PI(E) --* 0 as I --* oo. From this result it can be 
shown that ]G(E, O, x)] is summable in x with probability one. By refs. 4 
and 5, H has pure point spectrum near E with summable eigenfunctions. 
The exponential decay of Theorem 1 can be obtained by modifying our 
definition of Pt for l ~> lo. We introduce an additional exponential factor in 
PI and use a sequence of length scales li=exp[fl(3/2)~]. See ref. 12 for 
details. 
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Now assume P~ is small and let L = Rl. The key estimate is now 

PL(E) <~ CPz(E) 2 R2a+ 2M(2L)  a I R/4 (4) 

where M = max g(v). It is easy to see that for large R independent of/ ,  e.g., 
R = 10d, Pz, --* 0, where li = Ril. 

The proof of (4) begins by dividing Ac into a lattice of subcubes of 
side 21 as in Fig. 3. There are R a such cubes. In addition, we consider a 
larger family ~(AL) of overlapping cubes of side 2/. This family includes 
the original family and shifted lattices of cubes so that intersections of the 
type indicated in Fig. 4 are allowed. The family ~(AL) has the property 
that for any point x in AL there is a cube A l e ~  such that x e A ~  and 
I x - c l  <~I/2, where c is the center of At. Moreover ~(AL) has at most 
CaR d elements. 

The proof of (4) may now be divided into three parts: 

I. If all cubes of ~(AL) are /-regular, then AL is L-regular. This 
assertion will follow by expressing GAz a s  a series in GAI and by using 

1 
laA,(E; a, b)l (5) 

b~OAl 

for all ] a - c l  <~l/2. This inequality is simply the statement that A t ~  is 

( 

,1,  
k 

#regular. 

C L 

2 s  

At_ 

Fig. 3. Family of overlapping cubes AL, ta--cLI <~ L/2. 



1014 Spencer 

i- -l _ I, 

Fig, 4. Overlaps permitted in ~(AL). 

f 
I 
I 

' I 
II. The probability that there are two or more disjoint cubes in 

that are/-singular is less than 

(C~R 2d) P~(E) 

The first factor is an entropy factor, which counts the number of possible 
pairs of cubes. The second factor follows from the independence of the 
disjoint /-singular cubes. This product gives the first term in our upper 
bound on PC" 

III. If there is only one/-singular cube and if 

IIGAL(E)II ~ l R/4 (6) 

then A L is L-regular. The same statement holds if there are several 
/-singular cubes, no two of which are disjoint. 

There is a theorem due to Wegner (14'3) which implies that the 
probability that (6) fails is less than 2 M ( 2 L )  a l -R/4. This accounts for the 
final term of (4). It is the basic estimate that controls the probability that a 
small denominator E U (  A L ) - E] - 1 appears. 

Now we provide some further details for I and III. Assertion II is 
clear. We shall use the resolvent identity in the following form. Let A c A; 
then 

H ( A )  = H ( A )  + H ( A \ A ) -  F 

where F is the operator coupling A to A \ A  through the boundary of A in 
A. The operator F has matrix elements 

F i~=l  ( i , j ) 6 O A ,  ( i , j ) r  

-= 0 otherwise 

Here the boundary of A is the set of unordered pairs (i, j )  such that ie  A, 
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jCA. For notational simplicity we usually write F--OA. For xeA,  the 
desired resolvent identity is 

O~(x, p)= a~(x, p)+ F, O~(x, z) C,z,G~(z',/) 
z ,  z ~ 

(7) 

As above, we now suppress the dependence of G on E. 
To prove I, we iterate (7) with A=AL and for some sequence 

Aseo~(AL) centered at c~. To begin, let a and b be as in Fig. 3, and A o e ~  
such that a~Ao and [a-co[<<.l/2. Set F~=OA~, G~=GAi. Now, since 
Go(a, b) = 0, we have 

GA(a, b)= ~ Go(a, z1) I~OIz]GA(zI, b) (8) 
z l , z  1 

To iterate (8), we pick a cube A1 =A~(Z'l) containing z'l and satisfying 
Icl-z'll <~I/2. Now G A becomes 

GA(a, b)= ~ Go(a, z~) F~ Gl(Z'l, z2) F;:ziGA(Zl, b) (9) 
Z 

We continue to iterate and obtain the block resolvent expansion. A chain Ai 
is sketched in Fig. 5. Since the elements of ~ are all /-regular, each sum 
over z i by (5) gives a factor of l 2. Thus, we have 

]GA(a, b)l <~ (l 2/2)R/4<~L-(a+2) 

for large R; hence I holds. The exponent R/4 comes from the fact that there 
are at least R/4 factors of G~ before we reach the boundary. In other words, 
for some i>~R/4, Gi(z;,b)#O. See Fig. 5. Some details concerning the 
expansion as we get near the c~A are omitted. See ref. 12. 

To prove III, let () denote the union of the intersecting /-singular 
cubes. Clearly 0 is contained in a cube of side 4/. Note that each cube of 
in A -  A L \ 0  is /-regular, and from (5) and the block resolvent expansion, 

tGA(x, y) l  ~ < l - 2 ~  (9) 

where r =  ]x-yl/2l>>,2. We iterate (7) once with A=AL and A=AL\O 
and obtain 

GA(a, b)= [G~ + aATa~](a, b) 

= [G A + GAFG A + GAFGAFGAJ(a, b) (lo) 

where F =  c? U. First we estimate the third term on the right side of (10). In 
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Fig. 5. A chain of cubes in ~ appearing in the block resolvent expansion. 

matrix form the third term can be expressed as a sum over z~, z'~ and z2, Z2 
over ~? U = F, We claim that this sum is bounded by 

IG A(a, z , )  G A(z',, z2) G A(z'2, b)l 
z 

~< (2/) 2(a- 1) ~ l R/4 ~ <~ 2L -(a+2) for large R 
I I 

The first factor on the right accounts for the sum over 0 t,). We have used 
(9) with rl = l a -  z11/21, r 2 = [ z 2 -  bl/2l, and r 1 + r 2 >~ R/4 and (6) to bound 
GA(z~, z2). The first and second terms can be estimated in a similar fashion. 
Hence, AL is L-regular. This completes our sketch. 

3. Q U A S I P E R I O D I C  P O T E N T I A L S  

We now review some recent work on quasiperiodic potentials. We 
shall consider two Hamiltonians: 

H =  -g2A + COS 2~(jc~ + 0) (11) 
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on 12(Y_ 1) and 

d 2 
H , . -  dx 2 ~- KZ[-cos x + cos(~x + 0)] (12) 

on L2(R), where 7 is an irrational satisfying the Diophantine condition, 

const • Ij[ 2 Isin(j~2n)l ~> 1 

The first mathematical analysis of Hc is due to Dinaburg and Sinai, ~15) who 
proved the existence of some absolutely continuous spectrum at high 
energy for any value of K. The corresponding eigenstates are of Bloch type 
qp(x)  e ikx, where qp is quasiperiodic. These results were obtained by KAM 
techniques to overcome small denominator singularities. The coexistence of 
a point spectrum for Hc remained an open question. 

On the lattice, using the self-duality of H, it was shown that for any 
irrational ~, if ~2 < 1/2, H has no absolutely continuous spectrumJ 16 18) On 
the other hand, if e2> 1/2, H has no point spectrum. ~16'19) In ref. 20 the 
existence of a point spectrum was established for small e provided 
satisfied a Diophantine condition. When ~ is irrational but well 
approximated by rationals and e2< 1/2, the spectrum of H is purely 
singular continuous. (~8~ 

Many of the techniques and results described above do not extend to 
the continuum and in fact are special to the cosine potential. Recently, 
Fr6hlich etal., ~21) using some of the techniques of refs. 10 and 11, 
established a pure point spectrum for Hc at low energy provided K is large. 
We prove that the eigenfunctions decay exponentially fast and have 
precisely 2 n "peaks" for some n = 0, 1, 2 ..... The spectrum of Hc is essential, 
which means that there are no isolated eigenvalues. On the lattice, if e is 
small and the cosine in (11) is replaced by an even, C 2 periodic function 
with exactly two nondegenerate critical points, we prove that H has pure 
point spectrum. This result was independently proved by Sinai, (22) who in 
addition showed that the integrated density of states is an incomplete 
devil's staircase. 

Returning to the continuum, when K in (12) is small, Surace ~z3) has 
proved that Hc has no eigenvalues and we conjecture that Hc has purely 
absolutely continuous spectrum. When K is large it follows from ref. 23 
that H has no eigenstates at high energy. The nature of the spectrum of Hc 
at intermediate energies remains unclear. Is there a single mobility edge Em 
below which there is only point spectrum and above which there is no 
point spectrum? Or is there a band [E m, E + ] of mobility edges where the 
spectrum is a complicated mixture of pure point and absolutely continuous 
states? 
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We now sketch a proof of the absence of point spectrum for Hc when 
K is small. The strategy is due to Aubry ~16) and for mathematical details see 
refs. 19 and 23. Suppose f ( x )  is a square integrable eigenfunction of Hc for 
some 0 with eigenvalue E. Let f ( p ) e  L2(R) denote the Fourier transform of 
f and define 

am, n(p ) = f ( p  + m + n~) e +in~ 

where (m, n ) s  7/2. It is straightforward to show that amn(p ) is well defined 
for almost all p and ]am,(p)[ ~ O(m 2 + n2) 2. Furthermore, a(p) is an eigen- 
function of the dual operator/~(p):  

I2Ica~ �89 l,,~ + a~--1,,, + a,~.n+ l + a . . . .  1) + (m + n~ + P)2 am,,, 

= (KZA + v)a = Ea (13) 

where v (p )= v = (m + n~ + p)2 and A is our finite-difference Laplacian on 
7/2 with diagonal matrix elements set equal to zero. What Surace proves is 
that /4c and H share similar qualitative features when K and e are small. In 
particular, using techniques of ref. 21, he proves that Hc has pure point 
spectrum for almost all p ~ R with eigenvalues that depend "sensitively" on 
p. Now to show f is zero, i.e., there are no eigenfunctions for Hc, it suffices 
to prove that a(p) = 0 for almost all p. Roughly speaking, a(p) = 0, because 
the eigenvalue E of a(p) is independent of p. More precisely, let Ai be a 
sequence of squares in 7/2 of side li ~ ~ and let (~i(E) denote the Green's 
function of/~(Ai). It follows from the results of ref. 23 that for E indepen- 
dent of p, if I x - y [  >>-li/4 and i>~ io(p), then 

[G~(E, x, Y)I ~ < e-I~ll~-yl x, y ~ Z  2 (14) 

with io(p) < ~ for almost all p. Using Gi, we can recover a from its values 
on the boundary F ~ of A~: 

ax = ~ Gi(E, x, y) F i ,ay 
YY 

y, y '  

Hence, from the exponential decay of G and the polynomial growth of ay 

la~] ~< e-t'/20(12 " 14) 

Finally, since li ~ ~ ,  we conclude a~ = 0. 
Note that in the random case the analogue of (14) is (3). The main 

problem in the quasiperiodic problem is that of course there is no indepen- 
dence and the only notion of randomness is in the parameter 0 or p. All 
statements made in this section hold with "probability one," i.e., for almost 
all 0 or p with respect to Lebesgue measure. 
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